
Debugging with Software Visualization and Contract Discovery

S. Kanat Bolazar, James W. Fawcett

Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY 13244, USA

kanat2@yahoo.com, jfawcett@twcny.rr.com

Abstract

Despite advances, debugging remains a drudgery,
especially for software without proper documentation.
Both top-down visualization-based approaches and
bottom-up programmatic automation can improve this
process. For a given system under test (SUT), we propose
a combined method of:
� Program trace visualization, with capability to zoom

in to method call details (inputs and outputs)
� Interactive declaration of observables for the internal

state of the system
� Statistical and visual analysis of the collected

observable data
� Programmatic declaration of expected behavior of the

system defined through invariant relationships and
satisfaction of contracts (Design by Contract) on
these observables

� The ability to modify and repeat these steps without
restarting the SUT

We report that instrumentation necessary to collect trace
data is feasible; large amounts of data can be gathered
without significant performance penalty while the
visualizer remains responsive to tester interaction. Our
personal experience is that the system is very quick to set
up, faults are discovered quickly, and inefficient
algorithms (which may produce correct results) become
obvious through the visualizer. We are setting up human-
interaction experiments to support the claim that our
approach improves the efficiency of discovery of fault
origin for a given system failure, compared to using a
state-of-the-art debugger for Java (Eclipse).

1. INTRODUCTION

Today’s debuggers are becoming more powerful with
many features that decorate the standard debugging
paradigm. Popular IDEs such as Eclipse and IntelliJ
IDEA improve efficiency by instant syntax checking,
incremental compilation, and automated refactoring
macros, but the debugging paradigm is not improved: At a
given time, these IDEs still only allow the developer to
see a single point in the execution time of the program,
and a single point in the space of source code. This is in
part a fundamental limitation due to dependence on
symbolic representations whereas visualization could
make larger patterns of program behavior visible.
Bidirectional debugging [1, 2] works by checkpointing

to save the complete state of the SUT at certain intervals
during its execution so that the debugger can step back, as
well as forward, to any point in the execution of the SUT.

This approach reduces the effort involved in tracing back
from the manifestation of a failure to the original fault
that caused the failure. Bidirectional debugging also
removes the fear of stepping past an important point in the
execution. For hard-to-replicate internal states of the SUT,
this fear may cause the tester to take infinitesimally small
steps forward thereby increasing the total effort expended.
But, for a large program, the whole internal state of the

SUT is often too large to save in full. Also, the
environmental side-effects such as deletion of a file are
not always reversible.
Design by Contract (DBC) is a semi-formal approach

for software requirements specification which is also used
in creation of automated test oracles [3]. In two controlled
experiments, Mueller et al. discovered that DBC
improved cross-developer code reuse, reliability, and
maintenance efficiency, but the initial development phase
took longer [4]. Delaying the initial development has the
disadvantage of delaying user feedback that can be
utilized to improve the usability of the system. Instead of
full-coverage starting with the initial development, we
suggest an approach that allows selective just-in-time
retrofitting of contracts onto a system developed (or
otherwise acquired) to have no contracts. This approach
can improve accuracy in a way similar to how profiling
can improve efficiency. This way, important gains in
comprehensibility and maintainability may also be
achieved without significant start-up costs.
Execution trace visualizers such as Gammatella [5] use

information murals [6] – two-dimensional canvases where
the hue, saturation and brightness information encode
specific features of the collected data. This allows very
compact representation of vast amounts of data.
Our approach combines program understanding through

the use of an execution trace visualizer with partial test
automation through DBC-assertions for test oracle
specification. A tester-selectable subset of the internal
state information (we focus on data transfers during
method calls) is stored and failures are highlighted. Our
system does not require restarting the SUT, and target-
language code is used to define observables and contracts
during execution. The tester can use the tool to trace the
execution backwards in time from failure to fault origin.
 For the visualizer, we aim to minimize the user effort

and maximize usable visual information, to make larger
structures evident. Vision as an older evolutionary
development is a more natural and intuitive way to absorb
large amounts of data. Symbolic representation is a more
recent construct. A higher level programming language is
powerful, and a program demonstrates this power, when

generalization and abstraction can be used in automation,
as we attempt to do with our system.
During debugging, a software engineer constantly

revises her or his incomplete and possibly wrong internal
representation of the SUT and hypotheses about both the
desired and the actual behavior of the SUT.

Figure 1. Interactions between a software engineer and
a SUT, during debugging. Rectangles represent the
tangibles and ellipses represent human actions.

With a debugger, much of the internal state of the

program that is not ordinarily observable or modifiable
becomes both observable and modifiable.

2. OUR APPROACH

Our goal is explicit representation of hypotheses and use
of visualization and symbolic automation for
comprehension and verification. We allow tracing the
SUT while it is running, and the process can be repeatedly
performed without restarting the SUT. We describe our
proposed approach in detail in the following sections.

2.1. Tracing Sessions, Intercepting Method Calls

For each tracing session, the tester selects the methods
to trace, starts tracing, interacts with the SUT to recreate
the erroneous behavior, and stops tracing. This process
can be repeated without restarting the SUT. Each session
is recorded in a single execution trace record.
As a method is usually the smallest unit of interest for

testing, our current implementation intercepts method
calls. This means that our tracer can insert code before,
after, or instead of selected method calls, but not at any
other point in the program execution. Note that this is not
merely blackbox testing. Within a method, any call to any
traced method will also be caught and can be separately
instrumented.
Our implementation uses AspectJ to intercept method

calls. AspectJ [7] is an Aspect-Oriented Programming
(AOP) framework for Java which can perform load-time
weaving of bytecode. This means source code is not
needed; in a library which is shipped without source code,
we can instrument and trace the methods of the classes in
the library, including intra-library method calls if desired.

2.2. Tester-Defined Observables and Method

Contracts

The standard observables we save for a method call are
its parameters, "this" and "that" references, and the return
value. The “that” reference is the “this” reference of the
caller. Beyond these standard observables, the tester can
define tester-defined observables (fig. 2) using arbitrary
Java code that will be evaluated before (precondition
observables) and after (postcondition observables) a
method call. Beyond variables whose values will be
stored, print statements, loops to display or aggregate
values of an array, code to pop open a new GUI frame, or
dialog can also be used. We currently also allow calling
private methods and accessing private fields of any object.
We use Beanshell to parse and interpret these expressions
for each method call, without need for compilation.
Without expectations, one cannot separate normal from

unusual behavior. In our system, for each traced method,
the tester can specify the expected behavior of the method
in terms of the observables, using "method contracts" that
consist of DBC pre- and postconditions. We use
programmatic syntax for these contracts (fig. 2); the tester
defines one Boolean variable for each expected behavior
assertion, and declares that it should always hold true. For
some common tasks, we use macros that expand to code.

Figure 2. Method contracts use tester-defined Boolean

variables to specify the preconditions and the
postconditions asserted (middle column).

2.3. Visualizer

While the SUT is still being traced, summary statistics
are displayed and updated in real time. Any failure is
highlighted in red. This allows the tester to see instantly
that some methods have failed, possibly due to the last
tester interaction with the SUT.
The execution trace record visualizer gathers and

displays individual method calls over time as an execution
mural. Our visualizer also allows zooming in to a selected
method in order to inspect the details of that method call.
In the visualizer, we use discriminable colors from a

relatively cool color spectrum (blue-cyan-green-yellow
segment of the spectrum) to depict any method call which

conforms to expectations. Those method calls which have
any failed assertions are shown in red. If any call to a
method has a failed assertion, we also highlight that
method by displaying a red cross mark next to the method
signature (figs 3, 4). Execution time axis, displayed as
tick marks, uses tool tips to interactively display the time.

Figure 3. Visualizer displays all method calls traced in
one session, highlighting failures with red blocks and

cross marks.

Figure 4. Individual passed and failed calls. This is a
single thread (Java Swing event thread) and the method

calls (from paintComponent to paintOne to
calculateView) are obvious in this view.

The visualizer allows the tester to zoom in to these

problem methods and calls to determine the reason for the
failure of these assertions. The tester can examine the
stored values of all the observables for the individual
passed and failed method calls, inspect the details of any
observable object (fig. 5), including private fields.

Figure 5. Details of a failed method call, with failures
highlighted in red. Each object shown ("$this", "$that",
"intvl" and the return value in "$result") can be further
analyzed in a separate window by clicking on the object's

string representation.

2.4. Statistical Analysis and Plots

The aggregate data gathered for all calls of one method
are also statistically analyzed: A graphical two-
dimensional table showing statistical covariances between
all observables highlights strong relationships.
The tester may click on one cell in the covariance

matrix to pop up a plot of one observable against another.
The patterns of correlation can then be further inspected.
For unexpected data points, the method call that supplied
the data point can be inspected in detail. Any hypotheses
about how the program currently behaves or should
behave can be converted to contracts that define the
expected relationship between the observables plotted.

2.5. Goals: Debugging, Understanding, and Testing

Starting from the goal of finding the cause for a failure,
the tester can convert the negation of the observed failure
behavior to an assertion. The visualizer will then highlight
the method calls that fail when the failure is manifested,
and by going backwards in time (and possibly by adding
more assertions for the earlier methods and re-tracing) the
cause of the failure can be discovered.
If the SUT is too large or unfamiliar, the tester may

temporarily switch to the goal of understanding the
system and declare more observables in order to discern
the patterns in the big picture formed by the visualizer,
correlation matrix, and plots.
As DBC can be used as an automated testing oracle,

contracts can also be utilized to test parts of a system
within the framework of the integrated system. This
would exercise the input state space of each method
according to the common use of that method. For more
thorough testing of a method in isolation, the interactively
discovered contracts of that method can be exported.

3. EXPERIMENTS

3.1. Performance Degradation

For collecting and visualizing moderate to large
amounts of data, our implementation does not cause a
significant degradation in the SUT performance. Using a
Mac Mini with G4 1.25 GHz PPC CPU and 512 MB
memory, for a system trace of 11728 method calls
collected in 20.8 seconds, we observed a 19.2%
performance degradation. At five times this rate, 55385
method calls could be recorded in 19.9 seconds with
35.5% performance degradation. This is not a particularly
fast system, and yet the SUT remained quite usable. For
comparison, moving the mouse to traverse the diagonal
span of the screen in two seconds causes about 30%
performance degradation. The resulting trace mural was
quite responsive in the first case of about 12000 method
calls, but a little lagging in the second case with about
55000 calls. We use AspectJ for interception and
reflection-based interpretation of Beanshell for contract
evaluation. In a commercial system, to decrease the

overhead, JVMPI interface hooks and incremental
compilation would be preferable.

3.2. Future Experiments

We are soliciting human subjects (software engineers
and students) for randomized controlled experiments to
test the utility of our approach. Subjects will be given a
short hands-on introduction to using our visualizer. Each
subject will be asked to discover and fix two bugs in one
program using Eclipse, and two other bugs in another
program using our visualizer. To eliminate any
dependency on individual variations of ability, the total
time taken for all four bugs will be used to normalize the
time each subject took for each bug. Also, each subject
will be asked to complete a very short questionnaire about
comparative ratings of these two approaches, and which
features of the visualizer were most useful / hard to use.

3.3. A Personal Observation

The first author has been using this system to discover
and patch (temporarily fix) bugs in his own system for a
while. We report on one interesting session here.
In one portion of the visualizer, a method traverses

directory structures and tries to find Java source code
automatically, using a simple heuristic. Using the class
path as the starting point, this algorithm first searches for
an x.java file in the directory where the corresponding
x.class file resides. If this fails, parent and sibling
directories, and farther directories are traversed, with each
next traversal covering an exponentially larger area.
There was a bug in this method which was not obvious

upon inspection of the source code.
Using AOP, it was very easy to intercept all the related

methods in the enclosing class. Setup was a snap,
requiring only two lines of AOP code to be modified, to
change the definition of a pointcut, and to call the faulty
method from the tracer. The visualization and ability to
zoom in to method call details helped discover the source
of the bug in about half an hour. The bug was then
corrected, and the program ran correctly.
But there was something seriously out of place. The

visualizer showed that a very large number of method
calls were taking place (fig. 6). The stack of directories to
traverse was being scanned in reverse order (due to
stack/queue structure usage): The farthest relative (third
degree parent and all its descendents) was searched first.
The method still found the source file, but after much
unnecessary wasted effort. Fixing this bug was also
simple once the problem was discovered.

Figure 6. File search algorithm gave correct result but

there was much unnecessary disk access and computation.

The visualizer highlighted a problem of inefficiency,
even after the program was correct (had no bug), and
despite the fact that no such problem was sought after.
Debuggers allow precise, narrow, deep analysis and full
control, but they do not collect information from multiple
calls of the same method. Because of this, no debugger
today can make such large scale patterns of behavior
obvious.

4. CONCLUSION

We have proposed a new methodology that integrates
visual and symbolic approaches to program understanding,
testing, and debugging. Our experience shows that an
execution trace visualizer can make high-level patterns of
faulty behavior obvious. Using our approach, we can run
tests without restarting the SUT, access a wealth of
information about its internal state, and use code to define
observables and DBC contracts to specify the expected
behavior of the SUT. We believe this approach makes the
debugging process more efficient as compared to a state-
of-the-art debugger (Eclipse). We are setting up human-
subject experiments to test the validity of this claim.

5. ACKNOWLEDGEMENTS

I would like to thank Marju Purin for improving my
grammar as well as my critical thinking through proper
word usage.

6. REFERENCES

[1]. B. Lewis, and M. Ducasse, "Using events to debug
Java programs backwards in time," Companion of the
18th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA) '03, pp. 96-97, 2003.

[2]. B. Boothe, "Efficient Algorithms for Bidirectional
Debugging," Proc. of the ACM SIGPLAN '00 Conference
on Programming Language Design and Implementation,
vol. 35, no. 5, pp. 299 - 310, 2000.

[3]. D. Coppit, J. M. Haddox-Schatz, "On the Use of
Specification-Based Assertions as Test Oracles," 29th
Annual IEEE/NASA Software Engineering Workshop, pp.
305-314, 2005.

[4]. M. Müller, R. Typke, and O. Hagner, "Two
controlled experiments concerning the usefulness of
assertions as a means for programming," Proc. of the Intl
Conf on Software Maintenance, pp 84 - 92, 2002.

[5]. J. A. Jones, A. Orso, and M. J. Harrold,
"GAMMATELLA: visualizing program-execution data
for deployed software," Information Visualization, vol. 3,
no. 3, pp 173-188, 2004.

[6]. D. Jerding, J. Stasko, "The Information Mural: A
Technique for Displaying and Navigating Large
Information Spaces," Proc. IEEE Symposium on
Information Visualization, pp. 43 - 50, 1995.

[7]. Aspectj Project, http://www.eclipse.org/aspectj/

